(nlp)领域的重要组成部分。然而,不同领域对实体类型的定义存在差异,因此 ner 模型的构建

取决于特定领域任务需求,通常涵盖人物信息、地点信息和组织机构信息等。对于英语、法语、西

班牙语等外语文本,通常采用单词作为基本单位,因此基于这些语言的 ner 模型主要关注单词本身。

的语义特征和上下文信息。然而,中文语料文本通常由字符构成,需要考虑字符的语义信息和词汇

特征,同时引入其他表征信息来提升模型性能,如中文分词(cws)、语义部分标签(pos)等外部

信息,因此构建中文命名实体识别(er)模型更为复杂。目前,ner 任务的研究方法主要包括基

于词典和规则的方法、基于机器学习(l)的方法以及基于深度学习(dl)的方法。

目前,联合实体和关系提取神经模型可分为参数共享和序列标注两种方式。然而,许多研究将

实体和关系的联合提取看作是序列标记问题。尽管如此,识别复杂的关系仍然是一个具有挑战性的

任务,需要进一步提高联合提取模型的性能。此外,大多数新兴的联合提取神经模型仅在英语基准