(1)通过文件装载分割以及元数据获取的方法,对电力行业 lca 的英文文献中不同格式数据进

行解析,将文献大致分区,便于分类和文本提取,提高解析准确性。

(2)通过对电力行业 lca 的英文文献的解析,构建向量数据库,通过调用该向量数据库,提升

大模型回答关于电力行业 lca 时效性问题与专业性问题的能力,增强大语言模型对于电力行业 lca

问题分析的能力。

(3)通过实际数据对该数据库进行测评,分析该数据库回答专业性问题与时效性问题的能力。

122 研究意义

大语言模型处理论文具有重要的理论意义,一方面促进了语言理解与生成研究,推动了对语言

模型和语言生成算法的深入探索;另一方面,通过学习大量的论文文本,大语言模型有助于优化文

本表示学习方法,提高文本特征的抽象能力和表示效果,促进文本分类、聚类和生成等任务的发